Категории

Автоматическое частотное регулирование

20. Автоматическое регулирование частоты вращения (2 семестр)

Регулирование частоты с помощью вторичных автоматических регуляторов частоты

Для нормальной работы потребителей электрической энергии необходимо, чтобы значение частоты тока и напряжения соответствовали номинальным или, точнее, не выходили за допустимые пределы. Снижение частоты тока ведет к изменению частоты вращения электродвигателей, увеличению потребления мощности, а поэтому к их перегреву. Кроме того, на многих производствах изменение частоты вращения рабочей машины может самым пагубным образом сказаться на качестве выпускаемой продукции. Частоту тока на электрических станциях автоматически поддерживают на постоянном уровне при помощи регуляторов частоты вращения первичных двигателей.

Отклонение значения напряжения от номинального также приводит к нарушению нормального режима работы приемников энергии у потребителей. Известно, что вращающий момент электродвигателя пропорционален квадрату напряжения. Чтобы двигатель при снижении напряжения продолжал нести нагрузку, должно увеличиться скольжение, то есть уменьшиться частота вращения двигателя. Но при ее падении увеличивается потребляемый электродвигателем ток, что вызывает перегрев электродвигателя. Поэтому на электрических станциях наряду с устройствами регулирования частоты тока предусматривают устройства для регулирования напряжения.

В соответствии с ГОСТом в нормальном режиме работы допускаются отклонения значений частоты тока от номинального в пределах + 0,1 Гц. Временная работа энергосистемы возможна с отклонением частоты ±0,2 Гц. Для изолированно работающих станций мощностью до 100 и до 50 кВт допустимые отклонения частоты тока составляют соответственно +3 и +5 Гц.

Отклонения напряжения на зажимах приборов рабочего освещения, установленных в производственных помещениях и общественных зданиях, где требуется значительное зрительное напряжение, а также в прожекторных установках наружного освещения допускаются в пределах от —2,5 до +5% номинального. На зажимах электродвигателей и пускозащитной аппаратуры допускается отклонение напряжения в диапазоне от —5 до +10% номинального, а на зажимах остальных приемников—на ±5% номинального

В малоответственных сельскохозяйственных установках допустимые отклонения напряжения составляют от +7,5 до —7,5%.

Все рассмотренные выше схемы генераторов предполагают ручное регулирование напряжения, которое не может обеспечить надлежащего и своевременного контроля за изменением нагрузки. Современные синхронные генераторы оборудованы автоматическими устройствами, которые не только регулируют напряжение на зажимах генераторов, но и при необходимости увеличивают возбуждение до максимального значения в момент снижения напряжения (например, при аварийных режимах). Такие устройства называютавтоматическими регуляторами возбуждения (АРВ).

На маломощных сельскохозяйственных станциях устройства АРВ облегчают запуск короткозамкнутых электродвигателей. Они способствуют более быстрому восстановлению напряжения после отключения поврежденных участков электроустановки. Благодаря этому электрические двигатели, которые в момент аварии и понижения напряжения несколько притормозились, восстанавливают номинальную частоту вращения без нарушения технологического процесса — остановки рабочей машины.

Устройства автоматического регулирования возбуждения синхронных генераторов по принципу действия могут быть подразделены на три группы: 1) автоматические регуляторы напряжения; 2) устройства быстродействующей релейной форсировки возбуждения и 3) устройства компаундирования.

Нагрузка на генератор, определяемая числом и мощностью потребителей электроэнергии, постоянно изменяется. Увеличение нагрузки на генератор вызывает уменьшение частоты вращения первичного двигателя, а следовательно, и частоты тока. Наоборот, сброс нагрузки приводит к резкому возрастанию частоты вращения первичного двигателя и, значит, к увеличению частоты тока, в сети.

Для поддержания частоты тока на заданном уровне на электрических анциях устанавливают автоматические регуляторы частоты вращения первичных двигателей. Основным элементом аких устройств служит центробежный маятник, который воспринимает изменение частоты вращения первичного двигателя и через дополнительные устройства воздействует на орган, регулирующий частоту вращения. Регуляторы частоты вращения могут быть прямогоили косвенного действия.

Рисунок 10.9 иллюстрирует принцип работы регулятора прямого действия. При изменении частоты вращения (например, уменьшении) центробежный маятник М изменит свою первоначальную амплитуду (радиус) отклонения (показано

пунктиром) и через рычаг Р воздействует на задвижку 3, регулирующую поступление горючей смеси в цилиндры двигателя. Если нужно изменить нагрузку двигателя при постоянной частоте вращения, регулируют натяжение пружины П.

Регуляторы прямого действия применяют на двигателях малой мощности. Для поворота регулирующих клапанов паровых турбин или лопаток направляющего механизма гидротурбин энергии маятника недостаточно. В этом случае применяют регуляторы косвенного действия. Центробежный маятник воздействует на промежуточный механизм привода регулирующего органа первичного двигателя (серводвигатель).

Для автоматического регулирования напряжения на генераторах сельских электрических станций применяют обычно регуляторы напряжения реостатного, вибрационного и комбинированного типов. Изготавливают также электронные регуляторы.

Среди регуляторов напряжения угольный регулятор — один из самых простых и дешевых, однако область его применения ограничена станциями малых мощностей. Это регулятор прямого действия, так как он воздействует непосредственно на возбуждение возбудителя.

Такой регулятор (рис. 10.10, а) состоит из угольного реостата 4, полупроводникового выпрямителя 1, электромагнита 6 с рычагом 2 и пружиной 5. Угольные столбики реостата набраны из отдельных угольных шайб. Сопротивление этих столбиков зависит от степени сжатия шайб. Чем больше давление на столбики, тем меньше сопротивление реостата (и наоборот). Давление на угольные столбики создается тягой 3 и пружиной 5. Если электромагнит 6 включен, то якорь рычага 2 притягивается к сердечнику электромагнита, пружина 5 натягивается, а тяга 3, поднимаясь, уменьшает степень сжатия угольных шайб. Таким образом, и повышении напряжения в сети возрастает сила притяжения якоря, следовательно, уменьшается степень сжатия шайб в угольном реостате, возрастает его сопротивление и снижается ток в цепи возбуждения возбудителя В. Значение напряжения на зажимах генератора Г уменьшается до номинального.

Если нагрузка на генератор возрастает, напряжение его несколько спадает, сила притяжения электромагнита уменьшается, пружина 5 увеличивает сжатие угольных шайб в столбиках реостата и сопротивление реостата уменьшается. Поэтому усиливается ток возбуждения возбудителя и напряжение на зажимах генератора возрастает до номинального. Угольный реостат типа РУН рассчитан на номинальные напряжения 115 и 230 В.

При параллельной работе генераторов для повышения устойчивости работы агрегатов в схеме включения угольного реостата возбуждения предусматривается специальное устройство (компенсатор реактивной мощности), предупреждающее возрастание реактивной нагрузки при изменении возбуждения. Этой цели служит трансформатор тока ТТ, включенный в фазу В. Вектор напряжения в этой фазе UB сдвинут на угол 90° по отношению к вектору напряжения UAc между фазами А и С (рис. 10.10, б). При cos? =0, то есть если ток будет сдвинут по отношению к напряжению на 90°, во вторичной цепи трансформатора тока ТТ появится ток IB, совпадающий по направлению с напряжением UAc, питающим селеновый выпрямитель, и угольный реостат возбуждения воспримет это увеличение реактивной мощности как повышение напряжения. Реостат сработает на снижение возбуждения, а следовательно, и уменьшение реактивной мощности.

Стабилизирующий трансформаторСТ предназначен для сглаживания толчков тока и напряжения в момент регулирования напряжения. Этот трансформатор выполняет роль демпфирующего устройства в период регулирования возбуждения.

Кроме угольного реостата типа РУН, применяются реостатные регуляторы с проволочным резистором, имеющим отпайки от отдельных секций. Электромагнит регулятора в зависимости от значения напряжения на зажимах генератора вызывает замыкание или размыкание контактов, которые шунтируют отдельные секции реостата, включенного в обмотку возбуждения возбудителя. Этот реостат рассчитан на ток до 2 А и состоит из десяти секций (ступеней) сопротивлением 3 Ом каждая. Такой регулятор применим для отдельно работающих генераторов мощностью до 60 кВ•А. Использовать их при параллельной работе не рекомендуется, поскольку отсутствует устройство для выравнивания реактивных мощностей. При колебаниях нагрузки от нуля до номинальной напряжение генератора поддерживается на уровне ± 2.5%.

Вибрационные регуляторы напряжения типа АВРН предназначены для генератора мощностью До 60 кВ • А. Точность их регулирования ± 5% при изменении нагрузки от нуля до номинальной и колебаниях частоты тока в пределах ±20%. Комбинированные регуляторы напряжения сочетают в себе особенности регуляторов двух, первых типов.

 
Источник: http://www.rural-electrician.ru/sinhronnye-generatory-i-upravlenie-ih-rabotoj/avtomaticheskoe-regulirovanie-chastoty-naprjazhenija-i-aktivnoj-moshchnosti-na-selskih-elektrostancijah.html

АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ ЧАСТОТЫ И АКТИВНОЙ МОЩНОСТИ (АРЧМ)

Регулирование частоты с помощью вторичных автоматических регуляторов частоты

С целью повышения уровня автоматизации и точности поддержания частоты в энергосистеме используются специальные устройства _ автоматические регуляторы частоты. Эти централизованные устройства, называемые вторичными регуляторами, поддерживают заданное значение частоты в энергосистеме, воздействуя на установленные на агрегатах электростанций первичные регуляторы частоты вращения турбин.

Вторичные автоматические регуляторы частоты (АРЧ) изменяют с достаточной точностью отклонение частоты от номинального значения и вырабатывают управляющие команды.

На рис. 4.3 представлены схемы наиболее простых измерительных органов АРЧ, реагирующих на мгновенные отклонения частоты. Схемы представляют собой контуры из параллельно включенных активного сопротивления и индуктивности или емкости.

Контур настроен так, что при номинальном значении частоты сети токи I1 и I2 равны по значению. При понижении или повышении частоты сети вследствие изменения XL и XC равенство токов нарушается. В результате в зависимости от значения и знака отклонения частоты сети изменяется фаза тока на выходе контура, что и используется как признак отклонения частоты

 

Рис. 4.3 Принципиальные схемы измерительных органов вторичных регуляторов, реагирующих на мгновенное отклонение частоты

 

от номинального значения.

В других схемах используются резонансные контуры с параллельным включением L и С, а также фазочувствительные, фильтровые и балансные схемы. Кроме АРЧ, реагирующих на мгновенные отклонения частоты, используются также АРЧ, измерительные органы которых вырабатывают на своем выходе сигнал, пропорциональный интегралу отклонения частоты за заданный промежуток времени.

Управляющие команды АРЧ производят смещение характеристик первичных регуляторов (рис. 4.4). Так, если при f0 генератор работал с нагрузкой Р1, чему соответствовала точка а на характеристике 1, то при понижении частоты до f1генератор увеличил бы нагрузку до Р2, которой на характеристике 1 соответствует точка б.

 

 

Рис. 4.4 Перемещение статической характеристики РЧВ при помощи МУТ

 

Для того чтобы восстановить нормальную частоту, АРЧ, воздействуя на механизм управления турбиной, передвигает характеристику первичного регулятора в положение 2, пока частота вновь не станет номинальной (точка в). При этом нагрузка генератора возрастет до Р3. Интенсивность команд от АЧР пропорциональна отклонению частоты, а знак соответствует знаку отклонения.

Автоматический регулятор частоты имеет астатическую характеристику и воздействует на агрегаты электростанции, выделяемой для регулирования частоты в энергосистеме. Недостатком воздействия только на одну регулирующую электростанцию является необходимость обеспечения регулировочного диапазона на этой одной электростанции, что практически невозможно при наличии в энергосистеме достаточно мощной гидростанции. При недостаточном регулировочном диапазоне на одной электростанции АРЧ может воздействовать одновременно на две и более электростанции, используя для этой цели специальные каналы регулирования.

Автоматическое регулирование частоты должно осуществляться так, чтобы при этом обеспечилась также наиболее экономичная работа электростанций и энергосистемы в целом. Одним из основных условий получения максимальной экономичности является наивыгоднейшее распределение нагрузки между агрегатами электростанции или между электростанциями энергосистемы, обеспечивающее наименьшие расход условного топлива и потери мощности в электрической сети.

Выполнение первого условия достигается тем, что при понижении частоты в первую очередь загружаются наиболее экономичные агрегаты или электростанции. Это требование относится к агрегатам одной электростанции и электростанциям, связанным короткими сетями, потери мощности в которых не оказывают существенного влияния на экономичность энергосистемы в целом.

Если же электростанции связаны сетями большой протяженности, то должно быть обеспечено выполнение также и второго условия. Для этого загрузка и разгрузка электростанций при регулировании частоты должны производиться не только с учетом их экономичности, но также с учетом потерь мощности в сети.

Для выполнения указанных требований применяются специальные устройства распределения мощности (УРМ) разных типов, которые распределяют общее задание между электростанциями в соответствии с заранее рассчитанными для них долевыми участием. На регулирующих электростанциях также устанавливаются устройства для распределения задания между агрегатами. Такая система регулирования частоты называется централизованной.

В современных энергосистемах при регулировании частоты или перетоков мощности воздействие на изменение мощности генераторов или электростанций в целом производится через автоматические регуляторы электростанции (АРМС) и энергоблоков (АРМБ).

Структурная схема централизованного регулирования частоты несколькими электростанциями показана на рис. 4.5.

Рис. 4.5 Структурная схема централизованного регулирования частоты несколькими регулирующими электростанциями:

АЧР – автоматический регулятор частоты; УРМ – устройство распределения мощности между электростанциями; АКС1 – АКС3 – устройства связи для передачи и приема команд телерегулирования; АРМС1 – АРМС3 – устройства распределения мощности между агрегатами электростанций.

 

Как показано на структурной схеме на рис. 4.6, АРМС воспринимает задания на изменение мощности электростанции от регуляторов частоты (АРЧ), перетока мощности (АРПМ), ограничителя перетока мощности (АОМП) и от ручного задатчика внеплановой мощности (РЗВН) и распределяет суммарное задание между энергоблоками в заранее заданном долевом участии по их экономическим характеристикам.

Устройства АРМБ, получая задание от АРМС и ручного задатчика плановой мощности РЗПН, вырабатывают суммарное воздействие на регуляторы нагрузки турбин РНТ и котлов РНК и через них – на изменение мощности турбогенератора и котла. Изменение мощности прекращается, когда фактическая нагрузка генератора, контролируемая датчиком мощности ДМ, становится равной заданию. Эту мощность поддерживает АРМБ неизменной до тех пор, пока не изменится задание. Поэтому для того, чтобы АРМБ не препятствовал изменению под действием первичного РЧВ мощности при аварийном повышении или понижении частоты, используется частотный корректор ЧК, который при значительном отклонении частоты подает на АРМБ дополнительное задание на соответствующее изменение мощности энергоблока. Гидростанции оснащаются устройствами группового управления мощностью, выполняющими аналогичные функции.



 

 


Предыдущая14151617181920212223242526272829Следующая





Дата добавления: 2015-03-26; просмотров: 442;


ПОСМОТРЕТЬ ЕЩЕ:

Источник: http://helpiks.org/2-121298.html

автоматическое регулирование частоты

В энергетических системах в каждый данный момент должно вырабатываться такое количество электроэнергии, которое необходимо для потребления в данный момент, так как невозможно создание запасов электрической энергии.

Частота наряду с напряжением является одним из основных показателей качества электрической энергии. Отклонение частоты от нормальной ведет к нарушению режима работы электростанций, что, как правило, ведет к пережогу топлива. Понижение частоты в системе ведет к снижению производительности механизмов на промышленных предприятиях и к снижению к. п. д. основных агрегатов электростанций. Повышение частоты ведет также к снижению к. п. д. агрегатов электростанций и к увеличению потерь в сетях.

В настоящее время проблема автоматического регулирования частоты охватывает широкий круг вопросов как экономического, так и технического порядка. В настоящее время в энергосистеме осуществляется автоматическое регулирование частоты.

Влияние частоты на работу оборудования электростанций

Все агрегаты, совершающие вращательное движение, рассчитываются таким образом, чтобы их наивысший к. п. д. имел место три одной вполне определенной скорости вращения, а именно при номинальной. В настоящее время агрегаты, совершающие вращательное движение, в своем подавляющем большинстве связаны с электрическими машинами.

Производство и потребление электрической энергии в основном осуществляется на переменном токе; поэтому подавляющее большинство агрегатов, совершающих вращательное движение, связано с частотой переменного тока. Действительно, как частота вырабатываемого генератором переменного тока зависит от числа оборотов турбины, так и число оборотов механизма, приводимого во вращение двигателем переменного тока, зависит от частоты.

Отклонения частоты переменного тока от номинального значения по-разному влияют на различные типы агрегатов, а также на различные приборы и аппараты, от которых зависит экономичность работы энергосистемы.

Паровая турбина и ее лопаточный аппарат конструируются таким образом, что при номинальной скорости вращения (частоте) и безударном входе пара обеспечивается максимально возможная мощность на валу. При этом уменьшение частоты вращения приводит к возникновению потерь на удар пара о лопатки с одновременным увеличением момента вращения, а увеличение частоты вращения — к уменьшению момента вращения и увеличению удара по тыльной стороне лопатки. Наиболее экономично турбина работает при номинальной частоте.

Кроме того, работа при пониженной частоте приводит к ускоренному износу рабочих лопаток турбины и других ее деталей. Изменение частоты оказывает влияние на работу механизмов собственного расхода электростанции.

Влияние частоты производительность потребителей электроэнергии

Механизмы и агрегаты потребителей электроэнергии по степени их зависимости от частоты можно разбить на пять групп.

Первая группа. Потребители, у которых изменение частоты не оказывает непосредственного влияния на развиваемую мощность. К ним относятся: осветительная нагрузка, дуговые электропечи, течи сопротивления, выпрямители и нагрузка, питаемая от них.

Вторая группа. Механизмы, мощность которых изменяется пропорционально первой степени частоты. К таким механизмам можно отнести: металлорежущие станки, шаровые мельницы, компрессоры.

Третья группа. Механизмы, мощность которых пропорциональна квадрату частоты. Это механизмы, момент сопротивления которых пропорционален частоте в первой степени. Механизмов с точно таким моментом сопротивления нет, однако ряд специальных механизмов имеет момент, приближающийся к данному.

Четвертая группа. Механизмы с вентиляторным моментом, мощность которых пропорциональна кубу частоты. К таким механизмам относятся вентиляторы и насосы при отсутствии или незначительной величине статического напора сопротивления.

Пятая группа. Механизмы, мощность которых зависит от частоты в более высокой степени. К таким механизмам относятся насосы с большим статическим напором сопротивления (например, питательные насосы электростанций).

Производительность последних четырех групп потребителей уменьшается с понижением частоты и увеличивается с повышением. На первый взгляд кажется, что для потребителей выгодно работать с повышенной частотой, однако это далеко не так.

Кроме того, с повышением частоты уменьшается крутящий момент асинхронного двигателя, что может привести к торможению и останову агрегата, если двигатель не имеет запаса мощности.

Автоматическое регулирование частоты в энергосистеме

Целью автоматического регулирования частоты в энергосистемах в первую очередь является обеспечение экономичной работы станций и энергосистем. Экономичность работы энергосистемы не может быть достигнута без поддержания нормального значения частоты и без наивыгоднейшего распределения нагрузки между параллельно работающими агрегатами и станциями энергосистемы.

Для регулирования частоты производят распределение нагрузки между несколькими параллельно работающими агрегатами (станциями). При этом, распределяют нагрузку между агрегатами таким образом, чтобы при незначительных изменениях нагрузки системы (до 5 - 10%) режим работы подавляющего числа агрегатов и станций не менялся.

При переменном характере нагрузки наилучшим режимом будет такой, три котором основная часть агрегатов (станций) несет нагрузку, соответствующую условию равенства относительных приростов, а небольшие и непродолжительные колебания нагрузки покрываются за счет изменения нагрузки небольшой части агрегатов.

При распределении нагрузки между параллельно работающими агрегатами стремятся к тому, чтобы все они работали в области наивысших к. п. д. В этом случае обеспечивается минимальный расход топлива.

Агрегаты, на которые возлагается задача покрывать все внеплановые изменения нагрузки, т. е. регулировать частоту в системе, должны удовлетворять следующим требованиям:

  • иметь высокий к. п. д.;

  • иметь пологую кривую зависимости к. п. д. от нагрузки, т. е. сохранять высокий к. п. д. в большом диапазоне изменения нагрузки.

При значительном изменении нагрузки системы (например, увеличении ее), когда вся система переходит на режим работы с большей величиной относительного прироста, регулирование частоты передается такой станции, у которой величина относительного прироста близка к таковой в системе.

Частотная станция имеет наибольший регулировочный диапазон в пределах своей установленной мощности. Условия регулирования получаются несложными для практического осуществления, если регулирование частота может быть поручено одной станции. Еще более простое решение получается в тех случаях, когда регулирование может быть поручено одному агрегату.

Число оборотов турбин определяет частоту в энергосистеме, поэтому регулирование частоты осуществляется воздействием на регуляторы скорости турбин. Турбины, как правило, снабжаются центробежными регуляторами скорости.

Наиболее подходящими для регулирования частоты являются конденсационные турбины нормальных параметров пара. Совершенно непригодными типами турбин для регулирования частоты являются турбины с противодавлением, так как их электрическая нагрузка полностью определяется потребителем пара и почти совершенно не зависит от частоты в системе.

Возлагать задачу регулирования частоты на турбины с большими отборами пара нецелесообразно, так как у них, во-первых, (весьма небольшой регулировочный диапазон, а, во-вторых, они неэкономичны для переменного режима нагрузки.

Для поддержания необходимого регулировочного диапазона мощность станции, регулирующей частоту, должна быть не менее 8 - 10% от нагрузки в системе, чтобы она располагала достаточным регулировочным диапазоном. Регулировочный диапазон тепловых электростанций не может равняться их установленной мощности. Поэтому мощность тепловой станции, регулирующей частоту, в зависимости от типов котлов и турбин должна в два-три раза превышать необходимый регулировочный диапазон.

Наименьшая установленная мощность гидростанции для создания необходимого регулировочного диапазона может быть значительно меньше, чем тепловой. У гидростанций регулировочный диапазон, как правило, равен установленной мощности. При регулировании частоты гидростанцией отсутствует ограничение в скорости набора нагрузки, начиная с момента пуска турбины. Однако регулирование частоты гидростанций сопряжено с известным усложнением регулирующей аппаратуры.

Кроме типа станции и характеристик оборудования на выбор регулирующей станции влияет ее место в электрической системе, а именно — электрическая удаленность от центра нагрузки. Если станция расположена в центре электрической нагрузки и связана с подстанциями и другими станциями системы мощными линиями электропередачи, то, как правило, увеличение нагрузки регулирующей станции не приводит к нарушению статической устойчивости.

Наоборот, когда регулирующая станция расположена далеко от центра системы, то может возникнуть опасность нарушения устойчивости. В данном случае регулирование частоты должно сопровождаться контролем угла расхождения векторов э. д. с. системы и регулирующей станции или же контролем передаваемой мощности.

Основные требования, предъявляемые к системам регулирования частоты, регламентируют:

  • параметры и пределы регулирования,

  • статическую и динамическую погрешность,

  • скорость изменения нагрузки агрегатов,

  • обеспечение устойчивости процесса регулирования,

  • способность регулировать по заданному методу.

Регуляторы должны быть просты по конструкции, надежны в эксплуатации и дешевы.

Методы регулирования частоты в энергосистеме

Рост энергетических систем привел к необходимости регулировать частоту несколькими агрегатами одной станции, а затем и несколькими станциями. Для этой цели используется ряд методов, обеспечивающих устойчивую работу энергосистемы и высокое качество частоты.

Применяемый метод регулирования не должен допускать увеличения пределов отклонения частоты за счет погрешностей, имеющих место во вспомогательных устройствах (устройствах распределения активных нагрузок, каналах телеизмерения и т. п.).

От метода регулирования частоты требуется, чтобы он обеспечивал поддержание частоты на заданном уровне независимо от нагрузки агрегатов, регулирующих частоту (если, конечно, не использован весь их регулировочный диапазон), от числа агрегатов и станций, регулирующих частоту, и от величины и продолжительности отклонения частоты. Метод регулирования должен также обеспечивать поддержание заданного соотношения нагрузок регулирующих агрегатов и одновременность вступления в процесс регулирования всех агрегатов, регулирующих частоту.

Метод статических характеристик

Простейший метод получается при регулировании частоты всеми агрегатами системы, когда последние снабжены регуляторами скорости со статическими характеристиками. При параллельной работе агрегатов, работающих без смещения регулировочных характеристик, распределение нагрузок между агрегатами может быть найдено из уравнений статических характеристик и уравнений мощности.

В эксплуатации изменения нагрузки значительно превышают указанные величины, поэтому частота не может поддерживаться в заданных пределах. При таком методе регулирования необходимо иметь большой вращающийся резерв, рассредоточенный на всех агрегатах системы.

Данный метод не может обеспечить экономичной работы электростанций, так как, с одной стороны, при нем не может быть использована полностью мощность экономичных агрегатов, а с другой стороны, нагрузка всех агрегатов непрерывно меняется.

Метод астатической характеристики

Если все или часть агрегатов системы снабдить регуляторами частоты с астатическими характеристиками, то теоретически частота в системе при любых изменениях нагрузки будет неизменной. Однако при таком методе регулирования не получается фиксированного соотношения нагрузок между агрегатами, регулирующими частоту.

Данный метод может успешно применяться там, где регулирование частоты возлагается на один агрегат. В этом случае мощность агрегата должна быть не менее 8 - 10% от мощности системы. Совершенно безразлично, имеет ли астатическую характеристику регулятор скорости или агрегат снабжен регулятором частоты с астатической характеристикой.

Все внеплановые изменения нагрузки воспринимает агрегат с астатической характеристикой. Так как частота в системе остается неизменной, то нагрузки на остальных агрегатах системы остаются неизменными. Регулирование частоты одним агрегатом по данному методу является совершенным, но оно оказывается неприемлемым, когда Регулирование частоты возлагается на несколько агрегатов. По такому методу осуществляется регулирование в энергосистемах небольшой мощности.

Метод ведущего генератора

Метод ведущего генератора может применяться в тех случаях, когда по условиям системы регулирование частоты необходимо осуществлять несколькими агрегатами одной станции.

На одном из агрегатов, называемом ведущим, устанавливается регулятор частоты с астатической характеристикой. На остальных агрегатах, на которые также возлагается задача регулирования частоты, устанавливаются регуляторы (уравнители) нагрузки. На них возлагается задача поддерживать заданное соотношение между нагрузкой ведущего агрегата и остальными агрегатами, помогающими регулировать частоту. Все турбины системы имеют регуляторы скорости со статическими характеристиками.

Метод мнимого статизма

Метод мнимого статизма применим как для регулирования одной станцией, так и для регулирования несколькими станциями. В последнем случае между станциями, регулирующими частоту, и диспетчерским пунктом должны быть каналы телеизмерения двухстороннего действия (передача показания нагрузки со станции на диспетчерский пункт и передача автоматического приказания с диспетчерского пункта на станцию).

На каждом агрегате, принимающем участие в регулировании, устанавливается регулятор частоты. Такое регулирование является астатическим с точки зрения поддержания частоты в системе и статическим с точки зрения распределения нагрузок между генераторами. Оно обеспечивает устойчивое распределение нагрузок между регулирующими генераторами.

Распределение нагрузки между агрегатами, регулирующими частоту, осуществляется с помощью устройства распределения активных нагрузок. Последнее, суммируя всю нагрузку, приходящуюся на регулирующие агрегаты, делит ее между ними в определенном заданном соотношении.

Метод мнимого статизм позволяет также регулировать частоту в системе несколькими станциями и при этом будет соблюдаться заданное соотношение нагрузок как между станциями, так и между отдельными агрегатами.

Метод синхронного времени

Этот метод использует отклонение синхронного времени от астрономического в качестве критерия для регулирования частоты в энергосистемах несколькими станциями без применения средств телемеханики. В основу данного метода положена статическая зависимость отклонения синхронного времени от астрономического, начиная с некоторого момента времени.

При нормальной синхронной скорости роторов турбогенераторов системы и равенстве моментов вращения и моментов сопротивления ротор синхронного двигателя будет вращаться с одинаковой скоростью. Если на ось ротора синхронного двигателя насадить стрелку, то она в некотором масштабе будет показывать время. Поставив соответствующую передачу между валом синхронного двигателя и осью стрелки, можно добиться, что стрелка будет вращаться со скоростью часовой, минутной или секундной стрелки часов.

Время, показываемое данной стрелкой, и называется синхронным временем. Астрономическое время получают от источников точного времени или от эталонов частоты электрического тока.

Метод одновременного регулирования по астатической и статической характеристике

Сущность данного метода заключается в следующем. В энергосистеме выделяются две регулирующие станции, из них одна работает по астатической характеристике, а вторая — по статической с небольшим коэффициентом статизма. При небольших отклонениях действительного графика нагрузки от диспетчерского все колебания нагрузки будет воспринимать станция с астатической характеристикой.

Регулирующая станция со статической характеристикой в этом случае будет принимать участие в регулировании только в переходном режиме, не допуская больших отклонений частоты. По исчерпании регулировочного диапазона первой станции в регулирование вступает вторая станция. В данном случае новое установившееся значение частоты будет отличным от номинального.

До тех пор, пока частоту регулирует первая станция, нагрузка базисных станций будет оставаться неизменной. При регулировании второй станцией нагрузка на базисных станциях будет отклоняться от экономической. Достоинства, так же как и недостатки, данного метода очевидны.

Метод регулирования с блокировкой по мощности

Данный метод заключается в том, что каждая из энергосистем, входящих в объединение, привлекается к регулированию частоты только в том случае, если отклонение частоты вызвано изменением нагрузки в ней самой. Метод основан на следующем свойстве объединенных энергосистем.

Если в какой-либо энергосистеме увеличилась нагрузка, то в ней уменьшению частоты сопутствует уменьшение отдаваемой обменной мощности, в то время как в остальных энергосистемах уменьшению частоты сопутствует увеличение отдаваемой обменной мощности.

Это объясняется тем, что все агрегаты, имея статические регулировочные характеристики, стремясь поддержать частоту, увеличивают отдаваемую мощность. Таким образом, для энергосистемы, в которой возникло изменение нагрузки, знак отклонения частоты и знак отклонения обменной мощности совпадает, а в остальных энергосистемах эти знаки неодинаковы.

В каждой энергосистеме выделяется одна регулирующая станция, на которой устанавливаются регуляторы частоты и блокирующее реле обменной мощности.

Можно также устанавливать в одной из систем регулятор частоты, блокированный реле обменной мощности, а в соседней энергосистеме - регулятор обменной мощности, блокированный реле частоты.

Второй способ имеет преимущество перед первым, если допускается действие регулятора обменной мощности при номинальной частоте.

При изменении нагрузки в данной энергосистеме знаки отклонения частоты и обменной мощности совпадают, цепь регулирования не блокируется и под действием регулятора частоты увеличивается или уменьшается нагрузка на агрегатах данной системы. В других энергосистемах знаки отклонения частоты и обменной мощности разные и поэтому цепи регулирования заблокированы.

Для регулирования по данному методу требуется наличие телеканалов между подстанцией, от которой отходит соединительная линия в другую энергосистему, и станцией, регулирующей частоту или обменный поток. Метод регулирования с блокировкой может успешно применяться в тех случаях, когда энергосистемы соединены только одной связью друг с другом.

Метод частотной системы

В объединенной системе, включающей несколько энергосистем, регулирование частоты иногда поручается одной системе, а остальные контролируют передаваемую мощность.

Метод внутреннего статизма

Данный метод является дальнейшим усовершенствованием метода регулирования с блокировкой. Блокирование или усиление действия регулятора частоты осуществляется не специальными реле мощности, а путём создания статизма по передираемой (обменной) мощности между системами.

В каждой из параллельно работающих энергосистем выделяется по одной регулирующей станции, на которой устанавливаются регуляторы, имеющие статизм по обменной мощности. Регуляторы реагируют как на абсолютное значение частоты, так и на обменную мощность, при этом последняя поддерживается неизменной, а частота равной номинальной.

Практически в энергосистеме в течение суток нагрузка не остается неизменной, а меняется в соответствии с графиком нагрузки, также не остаются неизменными количество и мощность генераторов в системе и заданная обменная мощность. В силу этого коэффициент статизма системы не остается постоянным.

При большей генерирующей мощности в системе он меньше и при меньшей мощности, наоборот, коэффициент статизма системы больше. Поэтому требуемое условие равенства коэффициентов статизма не всегда будет выполняться. Это приведет к тому, что при изменении нагрузки в одной энергосистеме будут приходить в действие регуляторы частоты в обеих энергосистемах.

В энергосистеме, где возникло отклонение нагрузки, регулятор частоты в течение всего процесса регулирования будет действовать все время в одном направлении, стремясь компенсировать возникший небаланс. Во второй энергосистеме действие регулятора частоты будет двухсторонним.

Если коэффициент статизма регулятора по обменной мощности больше коэффициента статизма системы, то в начале процесса регулирования регулирующая станция данной энергосистемы будет уменьшать нагрузку, способствуя этим самым увеличению обменной мощности, а затем повышать нагрузку, чтобы восстановить заданное значение обменной мощности при номинальной частоте.

Когда коэффициент статизма регулятора по обменной мощности меньше коэффициента статизма системы то последовательность регулирования во второй энергосистеме будет обратной (сначала будет увеличиваться впуск движущего фактора, а затем уменьшаться).

Источник: http://ElectricalSchool.info/sety/1819-regulirovanie-chastoty-v-jenergosisteme.html
Интересное: